If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-12y-140=0
a = 1; b = -12; c = -140;
Δ = b2-4ac
Δ = -122-4·1·(-140)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{11}}{2*1}=\frac{12-8\sqrt{11}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{11}}{2*1}=\frac{12+8\sqrt{11}}{2} $
| 4x=12.5(6-x) | | x/15-12=-6 | | -6v+36=-77 | | -18+32=-2(x+1) | | 2(3x-1)=5(2x=4) | | y=3+2-3 | | 1/4(x-2)=x-5 | | 1/7x-9=-6/7x+5 | | 7(n-1)=28 | | -4(x-5)+9=29 | | 9/y+7/y=2 | | -27=-2k-3 | | -6v-36=-77 | | 15+17=-4(9x-8) | | 6(x+5)=-60 | | -45+5/6x=50 | | -3m+-10=-16 | | 9-3x-6-2x=5 | | 5y/3=11 | | 3-2y=30 | | 5x×2=7 | | (1/6)x-(3/2)x-2=(-5/3)x | | 0.46x=x-5.5 | | -6+-9x=-9x+-4 | | -29a+145=14-2a | | -179=-9r-8 | | 12=-4-8(-4k-6) | | 24w-36=w | | 8x-4x=-12 | | 9x-19=10x+7 | | 1/6x-3/2x-2=-5/3x | | -16-10x=-15-9x |